Cos x/cos(x-2y)=lambda then tan(x-y)tany
Answers
Given: cos x / cos ( x - 2y ) = lambda
To find: The value of tan(x-y)tany
Solution:
- So here we have given cos x/ cos ( x - 2y ) = lambda
- Now tan ( x - y ) tan y can be written as:
tan ( x - y ) tan y = (sin ( x - y ) / cos ( x - y )) x (sin y / cos y)
- Now multiply and divide by 2, we get:
2/2 x (sin ( x - y ) / cos ( x - y )) x (sin y / cos y)
- Now we know:
2sinasinb cos(a-b) - cos(a+b) and 2cosacob = cos(a-b) + cos(a+b)
- Applying this, we get:
cos(x - y - y ) - cos (x - y + y) / cos(x - y - y) + cos(x - y + y)
cos(x - 2y ) - cos (x ) / cos(x - 2y) + cos(x)
- Now taking cos(x - 2y ) common, we get:
cos(x - 2y ) { 1 - cos (x )/cos(x - 2y ) } / cos(x - 2y ) { 1 + cos (x )/cos(x - 2y ) }
- Cancelling cos(x - 2y ), we get:
{ 1 - cos (x )/cos(x - 2y ) } / { 1 + cos (x )/cos(x - 2y ) }
- Now we have given cos x / cos ( x - 2y ) = lambda, so :
{1 - lambda / 1 + lambda }
Answer:
So the value of tan ( x - y ) tan y is {1 - lambda / 1 + lambda }