Math, asked by achuaj8948, 1 year ago

Cos x + cos y the whole square + sin x minus sin y the whole square is equal to 4 cos square x + y divided 2

Answers

Answered by rishu6845
4

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by Anonymous
8

Answer:

Step-by-step explanation:

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

Step-by-step explanation:

prove that cos x + cos y whole square + sin x + sin y whole square equal to 4 cos square x minus y upon 2​

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

LHS

= Cos²x + Cos²y + 2CosxCosy  + Sin²x + Sin²y + 2SinxSiny

= 1 + 1 + 2CosxCosy + 2SinxSiny

= 1 + 1 + 2(CosxCosy + SinxSiny )

= 2 + 2Cos(x -y)

= 2 ( 1 + cos(x-y))

= 2 ( 2Cos²((x-y)/2))

= 4Cos²((x-y)/2)

= RHS

(Cosx + Cosy)² + (Sinx + Siny)² = 4(Cos²((x - y)/2))

Similar questions