Math, asked by prashanthraman, 11 months ago

cos x - cot x/cos x+cot x =sin x-1/sin x+1 using identities ​

Answers

Answered by NeelamG
1

we know that cot x = cos x / sin x

LHS

cos x - cot x / cos x +cot x

=(cos x -(cos x / sin x))/( cos x + (cos x /sin x ))

=

 \frac{ \cos(x)  \sin(x)  -  \cos(x) }{ \sin(x) }  \times \frac{ \sin(x) }{ \cos(x) \sin(x)   +  \cos(x) }  \\  \\ =   \frac{ \cos(x)  \sin(x)   -  \cos(x)  }{ \cos(x) \sin(x)  +  \cos(x)  }  \\  \\  =  \frac{ \cos(x)( \sin(x)  - 1) }{ \cos(x)( \sin(x) + 1)  }  \\  \\  =  \frac{ \sin(x) - 1 }{ \sin(x)  + 1}

= RHS

Similar questions