Math, asked by vijacomnfo, 6 months ago

cos√x
--------- . dx
√x ​

Answers

Answered by Asterinn
3

 \sf \longrightarrow  \displaystyle  \int \rm  \dfrac{cos \:  \sqrt{x} }{ \sqrt{x} } dx \\  \\  \\  \rm let \: \sqrt{x} \:  = t \\  \\ \rm    \dfrac{1}{2}  \: \frac{1}{\sqrt{x}}  \:  dx= dt\\  \\  \boxed{\rm     \frac{1}{\sqrt{x}}  \:  dx=2 dt} \\  \\  \\ \sf \longrightarrow  \displaystyle 2 \int \rm  {cos \:  t } \: dt\\  \\  \\ \sf \longrightarrow  2 \rm \:   {sin\:  t } + c \\  \\ \rm now \: put \: \bold{ t \:  =  \sqrt{x} }\\  \\  \\ \sf \longrightarrow  2 \rm \:   {sin\:    \sqrt{x}} + c

Additional Information :-

\boxed{\boxed{\begin{minipage}{4cm}\displaystyle\circ\sf\:\int{1\:dx}=x+c\\\\\circ\sf\:\int{a\:dx}=ax+c\\\\\circ\sf\:\int{x^n\:dx}=\dfrac{x^{n+1}}{n+1}+c\\\\\circ\sf\:\int{sin\:x\:dx}=-cos\:x+c\\\\\circ\sf\:\int{cos\:x\:dx}=sin\:x+c\\\\\circ\sf\:\int{sec^2x\:dx}=tan\:x+c\\\\\circ\sf\:\int{e^x\:dx}=e^x+c\end{minipage}}}

Similar questions