Math, asked by amoldhabale87mandvi, 10 months ago

cos x minus sin y whole square + sin x minus sin y whole square equal to 4 cos square​

Answers

Answered by Anjiiii
0

Answer:

question is incomplete,, 4 cos square???

Answered by harendrachoubay
0

(\cos x+\cos y)^{2} +(\sin x-\sin y)^{2}=2\cos^2 \dfrac{x+y}{2}, proved.

Step-by-step explanation:

L.H.S.=(\cos x+\cos y)^{2} +(\sin x-\sin y)^{2}

=\cos^2 x+\cos^2 y+2\cos x\cos y+\sin^2 x+\sin^2 y-2\sin x\sin y

=(\cos^2 x+\sin^2 x)+(\cos^2 y+\sin^2 y)+2\cos x\cos y-2\sin x\sin y

=1+1+2\cos x\cos y-2\sin x\sin y

=2+2(\cos x\cos y-\sin x\sin y)

=2+2\cos (x+y)

[ ∵ \cos (A+B)=\cos A\cos B-\sin A\sin B]

=2(1+\cos (x+y)

=2\cos^2 \dfrac{x+y}{2}

[ ∵ 2\cos^2 \dfrac{A+B}{2}=1+\cos (A+B)

=R.H.S, proved.

Hence,(\cos x+\cos y)^{2} +(\sin x-\sin y)^{2}=2\cos^2 \dfrac{x+y}{2}, proved.

you can refer:

https://brainly.in/question/2569880

Similar questions