Math, asked by guptaanjanigupta, 3 months ago

COS X -sin x 0
if F(x) =
sin x
COS
0
then show that
0
0
1
F(x). F (y) = F (x + y)​

Answers

Answered by mathdude500
3

Appropriate Question

\sf \: If \: F(x) \: \begin{gathered}\sf =\left[\begin{array}{ccc}cosx&-sinx&0\\sinx&cosx&0\\0&0&1\end{array}\right]\end{gathered}

Show that, F(x) × F(y) = F(x + y)

\large\underline{\sf{Solution-}}

Given that

\sf \: \: F(x) \: \begin{gathered}\sf =\left[\begin{array}{ccc}cos&-sinx&0\\sinx&cosx&0\\0&0&1\end{array}\right]\end{gathered}

So,

\sf \: \: F(y) \: \begin{gathered}\sf =\left[\begin{array}{ccc}cosy&-siny&0\\siny&cosy&0\\0&0&1\end{array}\right]\end{gathered}

Consider,

\rm :\longmapsto\:F(x) \: F(y)

\sf \:=\begin{gathered}\sf \left[\begin{array}{ccc}cosx&-sinx&0\\sinx&cosx&0\\0&0&1\end{array}\right]\end{gathered}\begin{gathered}\sf \left[\begin{array}{ccc}cosy&-siny&0\\siny&cosy&0\\0&0&1\end{array}\right]\end{gathered}

\begin{gathered}\sf =\left[\begin{array}{ccc}cosxcosy - sinxsiny&-sinxcosy - sinycosx&0\\sinxcosy + sinycosx&cosxcosy - sinxsiny&0\\0&0&1\end{array}\right]\end{gathered}

\begin{gathered}\sf =\left[\begin{array}{ccc}cosxcosy-sinxsiny&-(sinxcosy+ sinycosx)&0\\sinxcosy + sinycosx&cosxcosy-sinxsiny&0\\0&0&1\end{array}\right]\end{gathered}

\begin{gathered}\sf =\left[\begin{array}{ccc}cos(x + y)&-sin(x + y)&0\\sin(x + y)&cos(x + y)&0\\0&0&1\end{array}\right]\end{gathered}

 \:  \:  \:  \:  \:  \: \boxed{ \because \bf \: cosxcosy - sinxsiny = cos(x + y)} \\  \:  \:  \:  \:  \:  \: \boxed{ \because \bf \: sinxcosy +  cosxsiny = sin(x + y)}

 \sf \:  =  \: F(x + y)

{\boxed{\boxed{\bf{Hence, Proved}}}}

Additional Information :-

1. Commutative Property :-

  • Matrix multiplication may or may not be Commutative.

2. Associative Property :-

  • Matrix multiplication is Associative.

  • i.e. (AB)C = A(BC)

3. Distributive Property :-

  • Matrix multiplication is Distributive over Addition.

  • i.e. A(B + C) = AB + AC

4. There exist an identity matrix I such that

  • AI = IA = A

Similar questions