Math, asked by Mohammed4667, 18 days ago

cos x + sin x = root2 cos (x-x/4)=root2 sin (x+x/4)

Answers

Answered by mathdude500
6

Appropriate Question :-

\rm \: cosx + sinx =  \sqrt{2}cos\bigg(x -  \dfrac{\pi}{4}  \bigg) =  \sqrt{2}sin\bigg(x +  \dfrac{\pi}{4}  \bigg) \\

\large\underline{\sf{Solution-}}

Consider,

\rm \: cosx + sinx \\

can be rewritten as

\rm \: =  \:  \sqrt{2}\bigg(\dfrac{1}{ \sqrt{2} } cosx + \frac{1}{ \sqrt{2} }  sinx\bigg) \\

can be further rewritten as,

\rm \: =  \:  \sqrt{2}\bigg(cos\dfrac{\pi}{4} \: cosx +  sinx \: sin\dfrac{\pi}{4}\bigg) \\

\rm \: =  \:  \sqrt{2}\bigg(cosx \: cos\dfrac{\pi}{4} +  sinx \: sin\dfrac{\pi}{4}\bigg) \\

We know,

\boxed{ \rm{ \:cosx \: cosy \:  +  \: sinx \: siny \:  =  \: cos(x  -  y) \: }} \\

So, using this result, we get

\color{green}\rm \:  =  \:  \sqrt{2}cos\bigg(x -  \dfrac{\pi}{4}  \bigg) \\

We know,

\boxed{ \rm{ \:cosx = sin\bigg(\dfrac{\pi}{2} + x\bigg) \: }} \\

So, using this result, we get

\rm \:  =  \:  \sqrt{2}sin\bigg(\dfrac{\pi}{2} + x -  \dfrac{\pi}{4}  \bigg) \\

\color{blue}\rm \:  =  \:  \sqrt{2}sin\bigg(\dfrac{\pi}{4} + x \bigg) \\

Hence,

\rm\implies \: cosx + sinx =  \sqrt{2}cos\bigg(x -  \dfrac{\pi}{4}  \bigg) =  \sqrt{2}sin\bigg(x + \dfrac{\pi}{4}  \bigg)  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{sin(x  -  y) = sinx \: cosy \:  -  \: siny \: cosx}\\ \\ \bigstar \: \bf{sin(x + y) = sinx \: cosy \:  +  \: siny \: cosx}\\ \\ \bigstar \: \bf{cos(x + y) = cosx \: cosy \: -  \: sinx \: siny}\\ \\ \bigstar \: \bf{cos(x - y) = cosx \: cosy \:+\: siny \: sinx}\\ \\ \bigstar \: \bf{tan(x + y) = \dfrac{tanx + tany}{1 - tanx \: tany} }\\ \\ \bigstar \: \bf{tan(x - y) = \dfrac{tanx - tany}{1 + tanx \: tany} }\\ \\  \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions