Math, asked by papireddigariharika, 1 month ago

cos x - sinx
√8 - sin 2x
dx =​

Answers

Answered by MathHacker001
7

Question :-

 \rm{ \int  \frac{ \cos x -   \sin x   }{ \sqrt{8 -  \sin 2x } } dx    = } \\

Solution :

Putting cos x + sin x = t in the integral

 \sf \implies{( \cos x -  \sin x)dx = dt  }

 \sf \implies{( \cos x -  \sin x) {}^{2} =  t {}^{2}  }

\sf\implies{ \cos  {}^{2}x +  \sin {}^{2}  x  + 2 \sin x \cos x = t {}^{2}   }

\sf\implies{1 +  \sin 2x = t {}^{2} }

 \rm{ \int \frac{dx}{ \sqrt{9 - (1 +  \sin2x) } } } \\  \\  \\  \rm{ \int \frac{dt}{ \sqrt{9 - t {}^{2} } } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \sf \implies{ \sin {}^{ - 1} \frac{t}{3}  + c  }  \\

Answer :

 \small\rm{\int \frac{ \cos x -  \sin x }{ \sqrt{8 -  \sin2x } }dx =  \sin {}^{ - 1}  \frac{1 +  \sin2x }{3} c } \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions