Math, asked by dashingpatel1432, 5 months ago

cos (x+y).cos (x-y) = cos²y - sin²x​

Answers

Answered by Anonymous
36

{\boxed{\boxed{\red{\mathcal{ANSWER:}}}}}

Given:

  • Cos(x + y)Cos(x - y) = Cos²y - Sin²x

Formula used:

  • Cos(a + b) = Cos a.Cos b + Sin a.Sin b
  • Cos(a - b) = Cos a.Cos b - Sin a.Sin b

{\boxed{\boxed{\red{\mathcal{SOLUTION:}}}}}

We will choose LHS part,

\implies Cos(x + y) Cos(x-y)

\implies (Cos x Cos y + Sin x Sin y)(Cos x Cos y - Sin x Sin y)

Now, by using (a + b) (a - b) = a² - b²

\implies (Cos x Cos y)² - (Sin x Sin y)²

\implies Cos² x Cos² y - Sin² x Sin² y

\implies Cos² y(1 - Sin² x) - (1 - Cos² y)Sin² x

\implies Cos² y - Cos² y Sin² x - Sin² yx + Cos² y Sin² x

\implies Cos²y - Sin²x

\implies RHS

Hence Proved!!!

Answered by hareem23
1

Given:

Cos(x + y)Cos(x - y) = Cos²y - Sin²x

Formula used:

Cos(a + b) = Cos a.Cos b + Sin a.Sin b

Cos(a - b) = Cos a.Cos b - Sin a.Sin b

Solution:

We will choose LHS part ,

⟹ Cos(x + y) Cos(x-y)

⟹ (Cos x Cos y + Sin x Sin y)(Cos x Cos y - Sin x Sin y)

Now, by using (a + b) (a - b) = a² - b²

⟹ (Cos x Cos y)² - (Sin x Sin y)²

⟹ Cos² x Cos² y - Sin² x Sin² y

⟹ Cos² y(1 - Sin² x) - (1 - Cos² y)Sin² x

⟹ Cos² y - Cos² y Sin² x - Sin² yx + Cos² y Sin² x

⟹ Cos²y - Sin²x

⟹ RHS

Hence proved!!!


Anonymous: hii
hareem23: Hi
Anonymous: kya tumne mujhe pehchana
hareem23: han
Anonymous: sach me
hareem23: Ha sach me
Anonymous: pls inbox karo
Similar questions