Cos (x-y)/cos (x+y) = cotxcoty+1/cotxcoty-1
Answers
Answer:
Cos (x-y)/cos (x+y) = (cotxcoty+1)/(cotxcoty-1)
Step-by-step explanation:
Cos (x-y)/cos (x+y) = (cotxcoty+1)/(cotxcoty-1)
LHS = Cos (x-y)/cos (x+y)
Using Cos(A- B) = CosACosB + SinASinB
& Cos(A + B) = CosACosB - SinASinb
= (CosxCosy + SinxSiny)/(CosxCosy - SinxSiny)
Dividing numerator& Denominator by SinxSiny
= (CosxCosy/SinxSiny + 1)/((CosxCosy/SinxSiny - 1)
= ((cosx/Sinx).(cosy/(siny) + 1)/((cosx/Sinx).(cosy/(siny) - 1)
now CosA/SinA = CotA
= (CotxCoty + 1)/(CotxCoty - 1)
= RHS
QED
Proved
Cos (x-y)/cos (x+y) = (cotxcoty+1)/(cotxcoty-1)
Answer:
Step-by-step explanation:
Cos (x-y)/cos (x+y) = (cotxcoty+1)/(cotxcoty-1)
LHS = Cos (x-y)/cos (x+y)
Using Cos(A- B) = CosACosB + SinASinB
& Cos(A + B) = CosACosB - SinASinb
= (CosxCosy + SinxSiny)/(CosxCosy - SinxSiny)
Dividing numerator& Denominator by SinxSiny
= (CosxCosy/SinxSiny + 1)/((CosxCosy/SinxSiny - 1)
= ((cosx/Sinx).(cosy/(siny) + 1)/((cosx/Sinx).(cosy/(siny) - 1)
now CosA/SinA = CotA
= (CotxCoty + 1)/(CotxCoty - 1)
= RHS
QED
Proved
Cos (x-y)/cos (x+y) = (cotxcoty+1)/(cotxcoty-1)