Math, asked by mahamahmedmemon786, 3 months ago

(cos0 + Sin0) (cot0 + tan0) = Sec0 + cosec0


ashish1965: class = 10th
mahamahmedmemon786: yes
mahamahmedmemon786: jee 10th class ka hay
ashish1965: ok
mahamahmedmemon786: can you please help me to solve this question?

Answers

Answered by Aryan0123
6

To prove:

(cosθ + sinθ) (cotθ + tanθ) = secθ + cosecθ

Identities used:

  • sin²θ + cos²θ = 1
  • 1 ÷ sinθ = cosecθ
  • 1 ÷ cosθ = secθ

Method:

\bf{(cos \theta + sin \theta)(cot \theta + tan \theta)}\\\\\\= \sf{(cos \theta + sin \theta)\bigg(\dfrac{cos \theta}{sin \theta} + \dfrac{sin \theta}{cos \theta}\bigg)}

\\ \\

\rm{Taking \: LCM,}

\\ \\

\sf{(cos \theta + sin \theta) \bigg(\dfrac{cos^{2} \theta + sin^{2} \theta}{sin \theta \times cos \theta}\bigg)}

\\ \\

= \sf{(cos \theta + sin \theta)\bigg(\dfrac{1}{sin\theta . cos \theta}\bigg)}

\\ \\

= \sf{\dfrac{cos \theta + sin \theta}{sin \theta.cos \theta}}\\\\\\\\= \sf{\dfrac{cos \theta}{sin \theta.cos \theta}+ \dfrac{sin \theta}{sin \theta.cos \theta}}\\\\\\\\= \sf{\dfrac{1}{sin \theta}+ \dfrac{1}{cos \theta}}\\\\\\= \sf{cosec \theta + sec \theta }

= \boxed{\boxed{\red{\bf{sec \theta + cosec \theta}}}}\\\\\\\underline{\tt{Hence \: Proved}}

\\ \\

Know more:

\boxed{\begin{minipage}{6cm} Important Trigonometric identities :- \\ \\ $\: \: 1)\:\sin^2\theta+\cos^2\theta=1 \\ \\ 2)\:\sin^2\theta= 1-\cos^2\theta \\ \\ 3)\:\cos^2\theta=1-\sin^2\theta \\ \\ 4)\:1+\cot^2\theta=\text{cosec}^2 \, \theta \\ \\5)\: \text{cosec}^2 \, \theta-\cot^2\theta =1 \\ \\ 6)\:\text{cosec}^2 \, \theta= 1+\cot^2\theta \\\ \\ 7)\:\sec^2\theta=1+\tan^2\theta \\ \\ 8)\:\sec^2\theta-\tan^2\theta=1 \\ \\ 9)\:\tan^2\theta=\sec^2\theta-1$\end{minipage}}

Similar questions