Cos10—sin10÷Cos10+sin 10
Answers
Answered by
9
LHS = ( Cos 10 + Sin 10 ) / ( Cos 10 - Sin 10 )
{ Multiply numerator and and denominator with 1 / Cos 10 }
= [ 1 /Cos 10 ( Cos 10 + Sin 10 ) ] / [ 1/Cos 10 ( Cos 10 - Sin 10 ) ]
= [ Cos10 / Cos10 + Sin10 / Cos10 ] / [ Cos10 / Cos10 - Sin10 / Cos10 ]
= ( 1 + tan10 ) / ( 1 - tan 10 ) [ since sin 10 / cos 10 = tan 10 ]
= ( tan 45 + tan 10 ) / ( 1 - tan 45 tan 10 ) [ since tan 45 = 1 ]
= tan ( 45 + 10 )
[ since tan ( A + B ) = (tanA + tan B ) / (1 - tanAtanB)]
= tan 55
aakritibhattarai:
Answer=tan35
Answered by
2
-0.9996322328 is the correct answer.
Similar questions