Math, asked by chetanbera3821, 9 days ago

Cos10-sin10/cos10+sin10=cot55

Answers

Answered by mathdude500
8

Question :-

Prove that

\rm \:  \frac{cos10\degree  - sin10\degree }{cos10\degree  + sin10\degree }  = cot55\degree  \\

\large\underline{\sf{Solution-}}

Consider LHS

\rm \:  \frac{cos10\degree  - sin10\degree }{cos10\degree  + sin10\degree }  \\

Divide numerator and denominator by cos10°, we get

\rm \: =  \: \frac{ \dfrac{cos10\degree }{cos10\degree }  -  \dfrac{sin10\degree }{cos10\degree } }{\dfrac{cos10\degree }{cos10\degree }   + \dfrac{sin10\degree }{cos10\degree }}  \\

\rm \: =  \: \frac{1 - tan10\degree }{1 + tan10\degree }  \\

can be further rewritten as

\rm \: =  \: \frac{1 - tan10\degree }{1 + 1 \times tan10\degree }  \\

can be further rewritten as

\rm \: =  \: \frac{tan45\degree  - tan10\degree }{1 + tan45\degree  \times tan10\degree }  \\

We know,

\boxed{\sf{  \:\rm \: tan(x - y) =  \frac{tanx - tany}{1 + tanx \: tany}  \:  \: }} \\

So, using this result, we get

\rm \: =  \:tan(45\degree  - 10\degree ) \\

\rm \: =  \:tan35\degree  \\

\rm \: =  \:tan(90\degree  - 55\degree ) \\

\rm \: =  \:cot55\degree  \\

Hence,

\rm\implies \:\boxed{\sf{  \:\rm \:  \frac{cos10\degree  - sin10\degree }{cos10\degree  + sin10\degree }  = cot55\degree  \:  \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\boxed{\sf{  \:\rm \: sin(x + y) = sinxcosy + sinycosx \:  \: }} \\

\boxed{\sf{  \:\rm \: sin(x  -  y) = sinxcosy  -  sinycosx \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x   +   y) = cosxcosy  -  sinxsiny \:  \: }} \\

\boxed{\sf{  \:\rm \: cos(x - y) = cosxcosy   +   sinxsiny \:  \: }} \\

\boxed{\sf{  \:\rm \: tan(x +  y) =  \frac{tanx + tany}{1 -  tanx \: tany}  \:  \: }} \\

Answered by diliptalpada66
2

Step-by-step explanation:

R.H.S \pmb{\tt =\cot 55^{\circ}=\cot \left(45^{\circ}+10^{\circ}\right) }

 \color{olive} \pmb{\[ \begin{array}{l} \tt =\dfrac{\cot 45^{\circ} \cot 10^{\circ}-1}{\cot 10^{\circ}+\cot 45^{\circ}}=\dfrac{\cot 10^{\circ}-1}{\cot 10^{\circ}+1} \\  \\   \tt=\dfrac{\dfrac{\cos 10^{\circ}}{\sin 10^{\circ}}-1}{\dfrac{\cos 10^{\circ}}{\sin 10^{\circ}}+1} \:  \: =\dfrac{\dfrac{\cos 10^{\circ}-\sin 10^{\circ}}{\sin 10^{\circ}}}{\dfrac{\cos 10^{\circ}+\sin 10^{\circ}}{\sin 10^{\circ}}}  \\   \\ \tt=\dfrac{\cos 10^{\circ}-\sin 10^{\circ}}{\cos 10^{\circ}+\sin 10^{\circ}}=\text { L.H.S., Hence proved } \end{array} \]}

Similar questions