Cos10°+sin10°/cos10°-sin10°=
Answers
Answered by
1
Answer:
The answer is Cos 35
Step-by-step explanation:
LHS = ( Cos 10 + Sin 10 ) / ( Cos 10 - Sin 10 )
= [ 1 /Cos 10 ( Cos 10 + Sin 10 ) ] / [ 1/Cos 10 ( Cos 10 - Sin 10 ) ]
= [ Cos10 / Cos10 + Sin10 / Cos10 ] / [ Cos10 / Cos10 - Sin10 / Cos10 ]
= ( 1 + tan10 ) / ( 1 - tan 10 ) [ since sin 10 / cos 10 = tan 10 ]
= ( tan 45 + tan 10 ) / ( 1 - tan 45 tan 10 ) [ since tan 45 = 1 ]
= tan ( 45 + 10 )
[ since tan ( A + B ) = (tanA + tan B ) / (1 - tanAtanB)]
= tan 55
= tan ( 90 - 35 )
= cot 35 [ since tan ( 90 - A ) = cot A ] = R H S
hope this helps you.
Similar questions