Math, asked by sayumyukta, 1 year ago

cos10°-sin10°=k then cos20°​

Answers

Answered by SunitaWilliams
15

Your answer is in the attachment provided.

so please refer it.

Thnks

Attachments:

sayumyukta: thanks a lot
SunitaWilliams: My pleasure .
Answered by rahul123437
0

Trigonometry

cos10\textdegree-sin10\textdegree=k

On squaring both sides,

(cos10\textdegree-sin10\textdegree)^2=k^2\\\\\implies (cos10\textdegree)^2+(sin10\textdegree)^2+2 (cos10\textdegree)(sin10\textdegree)=k^2\\\\\implies cos^210\textdegree+sin^210\textdegree+2 (cos10\textdegree)(sin10\textdegree)=k^2\\

\implies 1+sin2(10\textdegree)=k^2\\

Since,

sin^2\theta+cos^2\theta=1\\\\and\\\\2sin\theta cos\theta=sin2\theta

\implies 1-sin20\textdegree=k^2\\\\\implies 1-k^2=sin20\textdegree

By pythagoras theorem,

cos20\textdegree=\frac{\sqrt{1-(1-k^2)^2} }{1} \\\\\implies cos 20\textdegree =\sqrt{(k^2)(2-k^2)}\\ \\\implies cos 20\textdegree=k\sqrt{2-k^2}

Hence, cos 20°= k√(2-k²).

Similar questions