Math, asked by abhayendra5997, 1 year ago

Cos15 + sin15 / cos15 - sin15 find tha value

Answers

Answered by virance87
0

Step-by-step explanation:

 \frac{ \cos(15)  +  \sin(15)  }{ \cos(15)  -  \sin(15) }  \\  \\  \frac{\cos(15)  +  \sin(15)}{ \cos(15)  -  \sin(15) }  \times  \frac{\cos(15)  +  \sin(15)}{\cos(15)  +  \sin(15)}  \\  \\  \frac{ ({\cos(15)  +  \sin(15))}^{2} }{  {cos}^{2} (15) -  {sin}^{2} (15)} \\  \\  \frac{ {cos}^{2} (15) + 2 \cos(15)  \sin(15)  +  {sin}^{2}(15) }{1 -  {sin}^{2} (15) -  { \sin }^{2} (15)}  \\  \\  \frac{1 + 2 \cos(15)  \sin(15) }{1 - 2 {sin}^{2}(15) }  \\  \\  \frac{1 + 2 \cos(15)  \sin(15)}{1 - 2 + 2 { \cos}^{2}(15) }  \\  \\  \frac{1 + 2 \cos(15)  \sin(15)}{2 { \cos }^{2} (15) - 1}

Answered by Anonymous
12

\Large\frak{\underline{\underline{Answer:}}}

 \frac{ \cos(15)  +  \sin(15)  }{ \cos(15)  -  \sin(15) }  \\  \\  \frac{\cos(15)  +  \sin(15)}{ \cos(15)  -  \sin(15) }  \times  \frac{\cos(15)  +  \sin(15)}{\cos(15)  +  \sin(15)}  \\  \\  \frac{ ({\cos(15)  +  \sin(15))}^{2} }{  {cos}^{2} (15) -  {sin}^{2} (15)} \\  \\  \frac{ {cos}^{2} (15) + 2 \cos(15)  \sin(15)  +  {sin}^{2}(15) }{1 -  {sin}^{2} (15) -  { \sin }^{2} (15)}  \\  \\  \frac{1 + 2 \cos(15)  \sin(15) }{1 - 2 {sin}^{2}(15) }  \\  \\  \frac{1 + 2 \cos(15)  \sin(15)}{1 - 2 + 2 { \cos}^{2}(15) }  \\  \\  \frac{1 + 2 \cos(15)  \sin(15)}{2 { \cos }^{2} (15) - 1}

Similar questions