Math, asked by rahill, 1 year ago

Cos15° - Cos75°

Please answer this​

Answers

Answered by littlestarb054
18

\underline{\underline{\mathfrak{\Large{Solution : }}}} \\ \\ \\ \bf\: Cos15\degree - Cos75\degree \\ \\ \\ \sf\implies\: Cos15\degree - Cos (90\degree - 15\degree) \\ \\ \\ \sf\implies\: Cos15\degree - Sin15\degree \\ \\ \\ \sf\implies\dfrac {\sqrt {3} + 1}{2\sqrt {2 }} - \dfrac {\sqrt {3} - 1}{2\sqrt {2}} = \dfrac{\sqrt {3} + 1 - (\sqrt {3 } - 1)}{2\sqrt {2}}\\ \\ \\ \sf\implies\dfrac {\sqrt {3} + 1 - \sqrt {3} + 1}{2\sqrt {2}} =\bf \dfrac {1}{\sqrt {2}}


littlestarb054: no
mysticd: How can you remember sin 15° and cos 15 values
mysticd: Take cos(45-30)-cos(45+30)
littlestarb054: OK
littlestarb054: edited time is over
Answered by MAYAKASHYAP5101
5

\huge\underline\mathfrak{Solutions :}

cos15° - cos75°

cos 15° - cos( 90 -15°)

cos 15° - sin15°

 \frac{ \sqrt{3 + 1} }{2 \sqrt{2} }  -  \frac{ \sqrt{3 - 1} }{2 \sqrt{2} }  \\  \\  =  </p><p></p><p>\frac{ \sqrt{3 + 1 - ( \sqrt{3 - 1)} } }{2 \sqrt{2} }  \\  \\  </p><p></p><p>\frac{ \sqrt{3 + 1 -  \sqrt{3 + 1} } }{2 \sqrt{2} }  =  \frac{1}{ \sqrt{2} }

HOPE IT WILL HELPS YOU !!!

Similar questions