Math, asked by sainijatin20, 3 months ago

∫(cos2θ–1/cos2θ+1) dθ ​

Answers

Answered by SparklingBoy
1

Formulas Used 》

☆》1 -  cos 2 \theta = 2 {sin}^{2} \theta \\  \\☆》1 + cos2\theta = 2 {cos}^{2 } \theta \\  \\ ☆》\frac{sin \theta }{cos \theta }  = tan\theta

 ☆》{tan}^{2} \theta =  {sec}^{2} \theta - 1

Solution 》

I =  \int  \dfrac{cos 2\theta  - 1}{cos 2\theta   +  1} \: d \theta \\  \\ =   - \int \frac{1 - cos  2\theta}{1 + cos2 \theta} \:  d \theta \\  \\  =  -  \int \frac{2 {sin}^{2} \theta}{2 {cos}^{2} \theta}  \: d \theta \\  \\  =  -  \int {tan}^{2}  \theta \: d \theta \\  \\  =  -  \int( {sec}^{2}  \theta - 1) \:d \theta \\  \\  =   -   \int  {sec}^{2}  \theta \: d \theta +  \int1 \: d \theta \\  \\  =  - tan  \theta +  \theta + C \\  \\  =  \theta - tan \theta + C

Which is the required Answer.

Answered by NewtonBaba420
4

I =  \int  \dfrac{cos 2\theta  - 1}{cos 2\theta   +  1} \: d \theta \\  \\ =   - \int \frac{1 - cos  2\theta}{1 + cos2 \theta} \:  d \theta \\  \\  =  -  \int \frac{2 {sin}^{2} \theta}{2 {cos}^{2} \theta}  \: d \theta \\  \\  =  -  \int {tan}^{2}  \theta \: d \theta \\  \\  =  -  \int( {sec}^{2}  \theta - 1) \:d \theta \\  \\  =   -   \int  {sec}^{2}  \theta \: d \theta +  \int1 \: d \theta \\  \\  =  - tan  \theta +  \theta + C \\  \\  =  \theta - tan \theta + C

Similar questions