Cos²θ(1+tan²θ) is equal to
a) Cos⁴ θ
b) cos θ
c) Cos²θ/Sinθ
d) 1
plz answer fast..and correct
Answers
Answer :-
______________________
Given ,
sinθ + sin²θ = 1
To find ,
The value of : cos²θ + cos⁴θ
Now ,
sinθ + sin²θ = 1
sinθ = 1 - sin²θ
sinθ = cos²θ ---------- ( i )
[ • As sin²θ + cos²θ = 1
So , sin²θ = 1 - cos²θ ]
★ Method - 1
sinθ = cos²θ
( sinθ )² = ( cos²θ )²
sin²θ = cos⁴θ
1 - cos²θ = cos⁴θ
cos⁴θ + cos²θ = 1 [ ★ Required answer ]
__________________
★ Method - 2
cos²θ + cos⁴θ
= sinθ + ( sinθ )²
[ • Putting the value of cos²θ = sinθ ]
= sinθ + sin²θ
= 1 [ • Given , sinθ + sin²θ = 1 ]
• So finally ,
[ cos²θ + cos⁴θ = 1 ]
______________________________
★ Be Brainly ★
Step-by-step explanation:
Tanθ+sinθ=m and tanθ-sinθ=n
∴, m²-n²
=(m+n)(m-n)
=(tanθ+sinθ+tanθ-sinθ)(tanθ+sinθ-tanθ+sinθ)
=(2tanθ)(2sinθ)
=4tanθsinθ
4√mn
=4√(tanθ+sinθ)(tanθ-sinθ)
=4√(tan²θ-sin²θ)
=4√{(sin²θ/cos²θ)-sin²θ}
=4√sin²θ{(1/cos²θ)-1}
=4sinθ√{(1-cos²θ)/cos²θ}
=4sinθ√(sin²θ/cos²θ)
=4sinθ√tan²θ
=4sinθtanθ