Math, asked by aayushwavre22, 3 months ago

cos² 45° - tan 45° - sin² 45° = ​

Answers

Answered by Blossomfairy
72

Given :

  • cos² 45° - tan 45° - sin² 45°

To find :

  • Value of cos² 45° - tan 45° - sin² 45°

According to the question,

 \\

 :  \implies \sf{cos {}^{2}45^{ \circ}   - tan   \: 45^{ \circ}  -   {sin}^{2} 45^{ \circ} }

 \\

 :  \implies \sf \bigg({ \dfrac{1}{ \sqrt{2} }  \bigg) {}^{2}  - 1 -   \bigg(\dfrac{1}{ \sqrt{2} }  \bigg){}^{2}  }

 \\

 :  \implies \sf{ \dfrac{1}{2} - 1 -  \dfrac{1}{2}  }

 \\

 :  \implies \sf{  {\not\dfrac{1}{2} }- 1 - {   \not\dfrac{1}{2}  }}

 \\

 :  \implies \sf{ - 1} \:  \red \bigstar

 \\

  \therefore{\underline{\textsf{ \textbf{The answer is -1.}}}}

┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈┈

\bigstar\:\sf {Trigonometry\: table :}

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Answered by Anonymous
3

cos² 45 - tan 45° - sin² 45°

= (1/√2)² - 1 - (1/√2)²

= - 1 (Ans.)

Similar questions