Cos²(45°+theta)+cos²(45°-theta)/tan(60°+theta)tan(30°-theta) + (sin47°/cos43°)-2cos²45°
Answers
Answered by
0
Answer:
1
Step-by-step explanation:
N = Cos²(45°+theta)+cos²(45°-theta)/tan(60°+theta)tan(30°-theta) + (sin47°/cos43°)-2cos²45°
let theta = ∝
N = Cos²(45°+∝)+cos²(45°-∝)/tan(60°+∝)tan(30°-∝) +(sin47°/cos43°)-2cos²45°
N = Cos²(45°+∝)+cos²(45°-∝)/tan(60°+∝ )tan(30°-∝) +(sin47°/sin47°)-2cos²45°
N = Cos²(45°+∝)+cos²(45°-∝)/tan(60°+∝ )tan(30°-∝) + 1 - 1
N = Cos²(45°+∝)+cos²(45°-∝)/tan(60°+∝ )cot(60°+∝)
N = Cos²(45°+∝)+cos²(45°-∝)/1
N = Cos²(45°+∝)+cos²(45°-∝)
N = Cos²(45°+∝)+sin²(45°+∝)
N = 1
Similar questions