cos2 A + Sin A + Cos A + Tan A = 2 ( Sin A. Cos A)
Answers
Answered by
2
Answer:
L.H.S=cosA(2cos2A−1)sinA(1−2sin2A)
L.H.S=cosA(2cos2A−1)sinA(1−2sin2A)Using multiple angle formula, cos2A=1−2sin2A=2cos2A−1
L.H.S=cosA(2cos2A−1)sinA(1−2sin2A)Using multiple angle formula, cos2A=1−2sin2A=2cos2A−1=cosAcos2AsinAcos2A
L.H.S=cosA(2cos2A−1)sinA(1−2sin2A)Using multiple angle formula, cos2A=1−2sin2A=2cos2A−1=cosAcos2AsinAcos2A=cosAsinA=tanA=R.H.S
Answered by
0
Step-by-step explanation:
First, change tan A to sin A/cos A then, cut cos^2 A with cos A and add the terms.
Attachments:
Similar questions