Cos2 a-sin2 a =tan2 b then show that tan 2 a =cos 2b-sin2 b.
Answers
Answered by
1
Cos^2b = 1/(tan^2b + 1)
Sin^2b = tan^2b/(1+tan^2b)
Then, Cos^2b - Sin^2b = (1 - tan^2b)/(1+tan^2b) (1)
By assuming that the input statement is: sin^2a - cos^2a = tan^2b (the original could have a typing error)
The expression (1) is:
Cos^2b - Sin^2b
= (1 - sin^2a + cos^2a)/(1 + sin^2a - cos^2a) But sin^2a + cos^2a = 1
Cos^2b - Sin^2b
= (1 - (1-cos^2a) + cos^2a)/(1 + sin^2a - (1-sin^2a))
Cos^2b - Sin^2b
= 2 cos^2a/ 2 sin^2a
= 1/cot^2a
=tan^2a
Answered by
0
Answer:
hfjdjdjdjdjdjdjdjsjsjdjjdjsjsjsjdjdjdjjdjdjsjsjsjsjdjxjchhchxhxj
Step-by-step explanation:
cjfndbdhjcjdbsnsjcikdjanshhc
Similar questions