Math, asked by sthitaaa, 8 months ago

cos2 + tan2 - 1 / sin2 = tan2​

Attachments:

Answers

Answered by pratikbhat73
5

Answer:

 \frac{ { \cos( \alpha )}^{2}  +  { \tan( \alpha ) }^{2}   - 1}{ \ \sin( \  { \alpha }^{2} ) }

putting sin^2 theta + cos^2 theta instead of 1

 \frac{ { \cos( \alpha ) }^{2}  +  { \tan( \alpha ) }^{2}  -  { \cos( \alpha ) }^{2}  -  { \sin( \alpha ) }^{2} }{ { \sin( \alpha ) }^{2} }

tan^2 theta - sin^2 theta/ sin^2 theta

 \frac{ { \tan( \alpha ) }^{2} }{ { \sin( \alpha ) }^{2} }   -  \frac{ { \sin( \alpha ) }^{2} }{ { \sin( \alpha ) }^{2} }

 \frac{ { \sin( \alpha ) }^{2} }{ { \cos( \alpha ) }^{2}  +  { \sin( \alpha ) }^{2} }   - 1

 \frac{1}{ { \cos( \alpha ) }^{2} }  - 1

 { \sec( \alpha ) }^{2}  - 1 =  { \tan( \alpha ) }^{2}

Hence PROVED!!!

Similar questions