Math, asked by sreerajappu007, 1 year ago

Cos2 theta cos theta- cos 6 theta cos 9 theta= sin7 theta sin 8 theta

Answers

Answered by MaheswariS
1

Answer:

cos\:2\theta\:cos\:\theta-cos\:6\theta\:cos\:9\theta

Multiply and divide by 2

=\frac{1}{2}[2\:cos\:2\theta\:cos\:\theta-2\:cos\:6\theta\:cos\:9\theta]

Using

\boxed{2\:cosA\:cosB=cos(A+B)+cos(A-B)}

=\frac{1}{2}[cos\:3\theta+cos\theta-(cos\:15\theta+cos(-3\theta))]

=\frac{1}{2}[cos\:3\theta+cos\theta-(cos\:15\theta+cos3\theta)]

=\frac{1}{2}[cos\:3\theta+cos\theta-cos\:15\theta-cos3\theta]

=\frac{1}{2}[cos\theta-cos\:15\theta]

Using

\boxed{cosC-cosD=-2\:sin(\frac{C+D}{2})\:sin(\frac{C-D}{2})}

=\frac{1}{2}[ -2\:sin(\frac{\theta+15\theta}{2})\:sin(\frac{\theta-15\theta}{2})]

=\frac{1}{2}[ -2\:sin8\theta\:sin(-7\theta)]

=\frac{1}{2}[ 2\:sin8\theta\:sin7\theta]

=sin8\theta\:sin7\theta

\implies\boxed{\bf\:cos\:2\theta\:cos\:\theta-cos\:6\theta\:cos\:9\theta=sin8\theta\:sin7\theta}

Similar questions