Math, asked by priyaank, 1 year ago

(cos20+8sin10sin50sin70)/sin^2(80)

Answers

Answered by sagia1217
82

Useful identity: sinϴsin(60-ϴ)sin(60+ϴ)=1/4*sin3ϴ

So, (cos20+8sin10sin50sin70)/sin^2(80)

= cos20+8(1/4*sin3(10))/sin^2(80)

=cos20+1/sin^2(80)

=2cos^2(10)/sin^2(80)

=2sin^2(80)/sin^2(80)

=2


Answered by mindfulmaisel
48

Given:

\frac {(cos 20+8 sin 10 sin 50 sin 70)}{sin^2 {80}}

To find:

The value of \frac {(cos 20+ 8 sin 10 sin 50 sin 70)}{sin^2 {80}}

Answer:

Identity:sin \theta sin (60- \theta) sin (60+\theta )=\frac {1}{4} \times {sin 3 \times \theta}

So,\frac {cos 20+ 8 sin 10 sin 50 sin 70)}{sin^2 {80}}

= cos 20+8( \frac {1}{4} \times \frac {sin 3 \times {10}}{sin^2{80}}

=cos 20+\frac {1}{sin^2{80}}

=2 \times \frac {cos^2 {10}}{sin^2 {80}}

=2 \times sin^2 {80} {sin^2 {80}}

=2

Similar questions