Math, asked by vinilohia9828, 1 year ago

cos²15°-cos²30°+cos²45°-cos²60°+cos²75°=1\2 prove that

Answers

Answered by Anonymous
1

cos²15°-cos²30°+cos²45°-cos²60°+cos²75°=1\2

LHS :- cos²15°-cos²30°+cos²45°-cos²60°+cos²75°

⇒ cos^2 15° - cos^2 ( 90° - 60°) + cos^2 45 - cos^2 60° + cos^2 ( 90° - 15°)

[ cos ( 90 - A ) = sin A and sin ( 90 - A ) = cos A ]

⇒ cos^2 15° - sin^2 60° + cos^2 45° - cos^2 60° + sin^2 15°

⇒ ( cos^2 15° + sin^2 + 15° ) - ( sin^2 60° + cos^2 60° ) + cos ^2 45°

⇒ 1 - 1 + cos^2 45° [ cos^2 A + sin^2 A = 1 ]

⇒ 0 + (1/root 2)^2

⇒ 0 + 1/2

⇒ 1/2

Hence proved

Similar questions