cos²15°-cos²30°+cos²45°-cos²60°+cos²75°=1\2 prove that
Answers
Answered by
1
cos²15°-cos²30°+cos²45°-cos²60°+cos²75°=1\2
LHS :- cos²15°-cos²30°+cos²45°-cos²60°+cos²75°
⇒ cos^2 15° - cos^2 ( 90° - 60°) + cos^2 45 - cos^2 60° + cos^2 ( 90° - 15°)
[ cos ( 90 - A ) = sin A and sin ( 90 - A ) = cos A ]
⇒ cos^2 15° - sin^2 60° + cos^2 45° - cos^2 60° + sin^2 15°
⇒ ( cos^2 15° + sin^2 + 15° ) - ( sin^2 60° + cos^2 60° ) + cos ^2 45°
⇒ 1 - 1 + cos^2 45° [ cos^2 A + sin^2 A = 1 ]
⇒ 0 + (1/root 2)^2
⇒ 0 + 1/2
⇒ 1/2
Hence proved
Similar questions