Cos²18°. Sin²36° - cos36°. Sin18°=?
Answers
Answered by
0
Answer:
We have:
[math]cos(20) = cos^2(0)-sin^2(0) = 1-sin^2(0) sin^2(0) = [/math]
[math]1-2sin^2(0) ... (1)[/math]
Hence, by [math](1)[/math] we take:
[math]cos^2(36)+sin^2(18) = cos^2[2(18)]+sin^2(18) = [/math]
[math][1-2sin^2(18)]^2+sin^2(18) = 4sin^4(18)+1-4sin^2(18)+sin^2(18) = [/math]
[math]4sin^4(18)-3sin^2(18)+1... (2)[/math]
Now, we only have to evaluate [math]sin18[/math
thank you
thank youbrainleast plz
thank youbrainleast plza request
Similar questions