Math, asked by mandalrahul52358, 4 days ago

cos²45⁰+sin²30. Find the value of​

Answers

Answered by GraceS
10

\huge\mathbb{ANSWER:}

Given :

  • cos²45°+sin²30°

To find :

  • Value of above trigonometric expression

Solution :

→cos²45°+sin²30°

As we know

  • cos 45°=\frac{1}{\sqrt{2}}

  • sin 30°=\frac{1}{2}

→  \bigg(\frac{1}{ \sqrt{2} }  \bigg) {}^{2}  +  \bigg(\frac{1}{ {2} }  \bigg) {}^{2}  \\

→ \frac{1}{2}  +  \frac{1}{4}  \\

  • Taking LCM

 → \frac{2 + 1}{4}  \\

→ \frac{3}{4}  \\

 \boxed{\bf \red{  \cos {}^{2} (45 \degree)  +  \sin {}^{2} (30 \degree)  =  \frac{3}{4} }} \\

Answered by IIXxSavageSoulxXII
31
  • \sf\fbox\red{Appropriate Question}

cos²45°+sin²30°, Find the values of it

  • \sf\fbox\red{Given}

cos²45⁰+sin²30

  • \sf\fbox\red{To Find}

Value of above trigonometric expression

  • \sf\fbox\red{Solution}

As per the question,

We have been provided the equation cos²45°+sin²30°.

As we know that according to trigonometric identity, the value of

cos45° =\frac{1}{\sqrt{2}}

sin30° = 0.5

Now,

On putting these value in equation cos²45°+sin²30° and further solving, we get,

cos²45°+sin²30°

= (\frac{1}{\sqrt{2}})^{2} + (0.5)^{2}

= \frac{1}{2} + 0.25

= 0.5 + 0.25

= 0.75

Hence, the required value = 0.75.

Similar questions