cos²73+cos²47-sin²43+sin²107is equal to
Answers
Answered by
5
make sure you know the basic trig identities, the ones i used in this question include
cos(a + b) = cosacosb - sinasinb
cos(a - b) = cosacosb + sinasinb
sin^2(a) = 1 - cos^2(a) (by rearranging sin^2(a) + cos^2(a) = 1)
also know that cos(120) = -cos(180-120) = -cos(60) = -1/2
i also used (a + b)(a - b) = a^2 - b^2
now, let's show a few things
cos(73 - 47)cos(73 + 47)
= ((cos(73)cos(47) + sin(73)sin(47))(cos(73)cos(47) - sin(73)sin(47))
= cos^2(73)cos^2(47) - sin^2(73)sin^2(47)
= cos^2(73)cos^2(47) - [(1 - cos^2(73))(1 - cos^2(47))]
= cos^2(73)cos^2(47) - [1 - cos^2(47) - cos^2(73) + cos^2(73)cos^2(47)]
= cos^2(73)cos^2(47) - 1 + cos^2(47) + cos^2(73) - cos^2(73)cos^2(47)
= -1 + cos^2(47) + cos^2(73)
hence cos^2(47) + cos^2(73) = cos(73 - 47)cos(73 + 47) + 1
cos^2(47) + cos^2(73) = cos(26)cos(120) + 1
cos^2(47) + cos^2(73) = 1 - (1/2)cos(26)
also, cos(73 - 47) + cos(73 + 47)
= cos(73)cos(47) + sin(73)sin(47) + cos(73)cos(47) - sin(73)sin(47)
= 2cos(73)cos(47)
therefore cos(73)cos(47) = (1/2)[cos(73 - 47) + cos(73 + 47)]
cos(73)cos(47) = (1/2)[cos(26) + cos(120)]
cos(73)cos(47) = (1/2)[cos(26) - 1/2]
cos(73)cos(47) = (1/2)cos(26) - 1/4
using these identities,
cos^2(73) + cos^2(47) + cos(73)cos(47)
= 1 - (1/2)cos(26) + (1/2)cos(26) - 1/4
= 1 - 1/4
= 3/4
hence cos^2(73) + cos^2(47) + cos(73)cos(47) = 3/4
cos(a + b) = cosacosb - sinasinb
cos(a - b) = cosacosb + sinasinb
sin^2(a) = 1 - cos^2(a) (by rearranging sin^2(a) + cos^2(a) = 1)
also know that cos(120) = -cos(180-120) = -cos(60) = -1/2
i also used (a + b)(a - b) = a^2 - b^2
now, let's show a few things
cos(73 - 47)cos(73 + 47)
= ((cos(73)cos(47) + sin(73)sin(47))(cos(73)cos(47) - sin(73)sin(47))
= cos^2(73)cos^2(47) - sin^2(73)sin^2(47)
= cos^2(73)cos^2(47) - [(1 - cos^2(73))(1 - cos^2(47))]
= cos^2(73)cos^2(47) - [1 - cos^2(47) - cos^2(73) + cos^2(73)cos^2(47)]
= cos^2(73)cos^2(47) - 1 + cos^2(47) + cos^2(73) - cos^2(73)cos^2(47)
= -1 + cos^2(47) + cos^2(73)
hence cos^2(47) + cos^2(73) = cos(73 - 47)cos(73 + 47) + 1
cos^2(47) + cos^2(73) = cos(26)cos(120) + 1
cos^2(47) + cos^2(73) = 1 - (1/2)cos(26)
also, cos(73 - 47) + cos(73 + 47)
= cos(73)cos(47) + sin(73)sin(47) + cos(73)cos(47) - sin(73)sin(47)
= 2cos(73)cos(47)
therefore cos(73)cos(47) = (1/2)[cos(73 - 47) + cos(73 + 47)]
cos(73)cos(47) = (1/2)[cos(26) + cos(120)]
cos(73)cos(47) = (1/2)[cos(26) - 1/2]
cos(73)cos(47) = (1/2)cos(26) - 1/4
using these identities,
cos^2(73) + cos^2(47) + cos(73)cos(47)
= 1 - (1/2)cos(26) + (1/2)cos(26) - 1/4
= 1 - 1/4
= 3/4
hence cos^2(73) + cos^2(47) + cos(73)cos(47) = 3/4
Answered by
19
Answer:
Step-by-step explanation:
Attachments:
Similar questions