Cos2A/1+sin2A=tan(π/4-A)
Answers
Hello users....
We have to prove that
Cos2A/1+sin2A=tan(π/4-A)
Solution:-
As shown in attachment...
Formula used :
Cos 2x = cos²x- sin²x
Sin²x +cos² x =1
Sin 2x = 2sin x cos x
And
(1-tan x)/(1+tan x) = tan (π/4 -x)
⭐⭐ Hope it helps ⭐⭐
HELLO DEAR,
GIVEN:- cos2A/(1 + sin2A) = tan (π/4 - A)
taking L.H.S,
we know:-
cos2A = cos²A - sin²A
sin²A + cos²A = 1
tanx - tany/(1 + tanxtany) = tan(x - y)
now,
cos2A/(1 + sin2A)
=> (cos²A - sin²A)/(1 + 2sinAcosA)
=> (cos²A - sin²A)/(sin²A + cos²A + 2sinAcosA)
=> (cosA - sinA)(cosA + sinA)/(sinA + cosA)²
[ a² - b² = (a - b)(a + b) , (a + b)² = a² + b² + 2ab]
=> (cosA - sinA)/(cosA + sinA)
=> (1 - sinA/cosA)/(1 + sinA/cosA)
[dividing by cosA in num.,den.]
=> (1 - tanA)/(1 + tanA)
=> (tanπ/4 - tanA)/(1 + tanπ/4.tanA)
=> tan(π/4 - A)
HENCE, L H.S IS EQUAL TO R.H.S
I HOPE IT'S HELP YOU DEAR,
THANKS