cos2a/1-sin2a=tan (45+a)
Answers
Answered by
7
we have to prove that cos2A/(1 - sin2A) = tan(45° + A)
we know, sin2x = 2tanx/(1 + tan²x)
cos2x = (1 - tan²x)/(1 + tan²x)
LHS = cos2A/(1 - sin2A)
= {(1 - tan²A)/(1 + tan²A)}/{1 - 2tanA/(1 + tan²A)}
= (1 - tan²A)/(1 + tan²A - 2tanA)
= {(1 - tanA)(1 + tanA)}/(1 - tanA)²
= (1 + tanA)/(1 - tanA)
[ we know tan45° = 1, putting 1 = tan45° ]
= (tan45° + tanA)/(1 - tan45°.tanA)
now using formula,
tan(C + D) = (tanC + tanD)/(1 - tanC.tanD)
so, (tan45° + tanA)/(1 - tan45°.tanA) = tan(45° + A) = RHS
here LHS = RHS
hence proved.
also read similar questions : cos2A/1+sin2A=tan(π/4-A)
https://brainly.in/question/1688070
prove :SIN2A/COS2A+COS2A/SIN2A= 1/SIN2A.COS2A -2
https://brainly.in/question/8776094
Answered by
0
Answer:
Step-by-step exp
lanation:
Similar questions