Cos2a/1-tana+sin3a/sina-cosa=1+sina.cosa
Answers
Answered by
3
✨✨heymate here your soln ✨✨
Prove : cos2A1−tanA+sin3AsinA−cosA=1+sinAcosA.
We have, cos2A1−tanA+sin3AsinA−cosA,
=cos2A1−sinAcosA−sin3AcosA−sinA,
=cos2AcosA−sinAcosA−sin3AcosA−sinA,
=cos3AcosA−sinA−sin3AcosA−sinA,
=cos3A−sin3AcosA−sinA,
=(cosA−sinA)(cos2A+cosAsinA+sin2A)(cosA−sinA)..........(∗),
=(cos2A+sin2A+sinAcosA),
=1+sinAcosA, as desired!
Note that while cancelling (cosA−sinA) at (∗), we have
assumed that (cosA−sinA)≠0,i.e.,tanA≠1.
This is quite admissible, otherwise the left member of the
Identity would not exist!
Prove : cos2A1−tanA+sin3AsinA−cosA=1+sinAcosA.
We have, cos2A1−tanA+sin3AsinA−cosA,
=cos2A1−sinAcosA−sin3AcosA−sinA,
=cos2AcosA−sinAcosA−sin3AcosA−sinA,
=cos3AcosA−sinA−sin3AcosA−sinA,
=cos3A−sin3AcosA−sinA,
=(cosA−sinA)(cos2A+cosAsinA+sin2A)(cosA−sinA)..........(∗),
=(cos2A+sin2A+sinAcosA),
=1+sinAcosA, as desired!
Note that while cancelling (cosA−sinA) at (∗), we have
assumed that (cosA−sinA)≠0,i.e.,tanA≠1.
This is quite admissible, otherwise the left member of the
Identity would not exist!
Answered by
0
Answer:
Hyyy dear friend your answer....
Please make me a brainlist plz
Attachments:
Similar questions