Math, asked by dograbrothers3437, 1 year ago

Cos²A+cos²B-2cosAcosBcos(A+B)=sin²(A+B)

Answers

Answered by pinquancaro
3

Step-by-step explanation:

To prove : \cos^2A+\cos^2B-2\cosA\cosB\cos(A+B)=\sin^2(A+B)

Proof :

Taking LHS,

LHS=\cos^2A+\cos^2B-2\cosA\cosB\cos(A+B)

=\cos^2A+\cos^2B-2\cosA\cosB(\cosA\cosB-\sinA\sinB))

=\cos^2A+\cos^2B-2\cos^2A\cos^2B+2\cosA\cosB\sinA\sinB

=\cos^2A-\cos^2A\cos^2B+\cos^2B-\cos^2A\cos^2B+2\cosA\cosB\sinA\sinB

=\cos^2A(1-\cos^2B)+\cos^2B(1-\cos^2A)+2\cosA\cosB\sinA\sinB

=\cos^2A\sin^2B+\cos^2B\sin^2A+2\cosA\cosB\sinA\sinB

=\sin^(A+B)

=RHS

Hence proved

#Learn more

Cos^2A + cos^2 B - 2cosAcosBcos (A+B)=sin^2 (A+B).

https://brainly.in/question/1427657

Similar questions