cos2a+cos2b+cos2c=1+4sinasinbsinc
Answers
Answered by
1
Answer:
cos2a + cos2b + cos2c
= cos2a + [ cos(2b) + cos(2c) ]
= cos2a + 2*cos(b + c)*cos(b - c)
= (2cos²a - 1) + 2cos(180 - a)*cos(b - c)
= 2cos²(a) - 1 - 2cos(a)*cos(b - c)
= - 1 + 2cos(a) * [cos(a) - cos(b - c)]
= - 1 + 2cos(a) [ cos {180 - (b + c) } - cos(b - c) ]
= - 1 + 2cos(a) [ - cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ cos (b + c) - cos(b - c) ]
= - 1 - 2cos(a) [ 2*cos(b)*cos(c) ]
= - 1 - 4 cosa cosb cosc
please mark me as brainliest
Similar questions