Cos2A cos3A - cos2Acos7A +cosAcos10A\sin4Asin3A-sin2Asin5A +sin4Asin7A= cot6Acot5A
Answers
Answered by
0
Answer:
Step-by-step explanation:
(cos2Acos3A-cos2Acos7A+cosAcos10A)/(sin4Asin3A-sin2Asin5A+sin4Asin7A)
//multiply and divide by 2 both numerator and denominator
=(2cos2Acos3A-2cos2Acos7A+2cosAcos10A)/(2sin4Asin3A-2sin2Asin5A+2sin4Asin7A)
//2cosAcosB = Cos(A+B) + Cos(A-B)
//2SinASinB = Cos(A-B) - Cos(A+B)
=(cos5A+cosA-cos9A-cos5A+cos11A+cos9A)/(cosA-cos7A-cos3A+cos7A+cos3A-cos11A)
=(cosA+cos11A)/(cosA-cos11A)
=2cos6Acos5A/2sin6Asin5A
=cot5Acot6A
= R.H.S
Hence Proved
Similar questions