COS2A - COS3A/
sin2A - Sin3A
Answers
Answered by
0
Answer:
We know,
cos A – cos B = - 2 sin [(A+B)/2] sin [(A-B)/2]
sin A – sin B = 2 cos [(A+B)/2] sin [(A-B)/2]
tan A = sin A / cos A
Therefore,
cos 2A – cos 3A
= -2 sin [(2A+3A)/2] sin [(2A-3A)/2]
= -2 sin (5A/2) sin (-A/2)
= 2 sin (5A/2) sin (A/2) …… (i)
And,
sin 2A – sin 3A
= 2 cos [(2A+3A)/2] sin [(2A-3A)/2]
= 2 cos (5A/2) sin (-A/2)
= - 2 cos (5A/2) sin (A/2) …… (ii)
Now, by substituting the values from (i) & (ii), let’s solve the given trigonometric equation,
[cos 2A – cos 3A] / [sin 2A – sin 3A]
= [2sin (5A/2) sin (A/2)] / [- 2 cos (5A/2) sin (A/2)]
= sin (5A/2) / - cos (5A/2) [cancelling the similar terms]
= - tan (5A/2)
Similar questions