Cos²A+ Sin^2A. Cos2B = Cos²B + sin²B. Cos2A prove
Answers
Answered by
0
Answer:
L.H.S=cos^2A+sin^2A.cos2B
=cos^2A+sin^2A.(1-2sin^2B) [ since,
cos2A=1-2sin^2A]
=cos^2A+sin^2A-2.sin^2A.sin^2B
=1-2.sin^2A.sin^2B [ since, sin^2A+cos^2A=1]
R. H. S=cos^2B+sin^2B.cos2A
=cos^2B+sin^2B.(1-2sin^2A)
=cos^2B+sin^2B-2.sin^2A.sin^2B
=1-2.sin^2A.sin^2B
L. H. S = R.H.S
hence proved
Answered by
0
Your answer :-
LHS=(sinAcosB) 2−(cosAsinB) 2
=(sinAcosB+cosAsinB)(sinAcosB−cosAsinB)
=sin(A+B)sin(A−B)
=sin
2 A−sin
2 B =RHS
Hence proved
Brainly hero
Similar questions