Cos²A-sin²A= tan B. Prove that cos²B-sin²B=tan²A
Answers
Answered by
1
Step-by-step explanation:
Given : cos²A - sin²A = tan²B
We know that,
cos²A + sin²A = 1
First we add these equations, we get
→ 2cos²A = 1 + tan²B
→ cos²A = (1 + tan²B)/2
→ cos²A = sec²B/2
{ sec²∅ = 1 + tan²∅ }
Second we subtract these equations, we get
→ 2sin²A = 1 - tan²B
→ sin²A = (1 - tan²B)/2 ...(ii)
We know that,
sin²A/cos²A = tan²A
→ [ (1 - tan²B)/2 ] / [ sec²B/2 ] = tan²A
[ using (i) & (ii) ]
→ (1 - tan²B) / sec²B = tan²A
→ (1/sec²B) - (tan²B/sec²B) = tan²A
→ (1/sec²B) - [ (sin²B/cos²B) / (1/cos²B) ] = tan²A
→ cos²B - sin²B = tan²A
Hence, proved !!
Similar questions