Math, asked by kauahik11, 6 months ago

cos2B-sin2B (when B=30°)​

Answers

Answered by anindyaadhikari13
2

\star\:\:\:\sf\large\underline\blue{Question:-}

  • Evaluate \sf\cos(2x)  -  \sin(2x) when \sf x = 30 \degree

\star\:\:\:\sf\large\underline\blue{Solution:-}

\sf\cos(2x)  -  \sin(2x)

\sf = \cos(60 \degree)  -  \sin(60 \degree)

 \sf =  \frac{1}{2}  -  \frac{ \sqrt{3} }{2}

 \sf =  \frac{1 -  \sqrt{3} }{2}

\star\:\:\:\sf\large\underline\blue{Answer:-}

  • \sf\cos(2x)  -  \sin(2x)  =  \frac{1 -  \sqrt{3} }{2}
Answered by nehashanbhag0729
0

Answer:

hey watch the above pic for ur answer of the question hope it may helps u

Attachments:
Similar questions