Math, asked by TARUN7T, 1 year ago

cos²Ø/1-tanØ+sin³ø/sinø-cosØ=1+sinØ× cosø​

Answers

Answered by sdey77433
3

Step-by-step explanation:

I hope you were able to answer this question correctly

Attachments:
Answered by Anonymous
11

 \huge {\bold {HELLO..!,}}

 \frac{{cos}^{2}  \: x}{ 1 -  {tan}^{2}x }  +  \frac{ {sin}^{3} x}{sin \: x \:  - cos \: x} =  1 - sin \: x.cos \: x

  =  > \frac{{cos}^{2}  \: x}{ 1 -  {tan}^{2}x }  +  \frac{ {sin}^{3} x}{sin \: x \:  - cos \: x} \:  \\  \\  =  >  \frac{{cos}^{2}  \: x}{ 1 -   \frac{  {  sin }^{2}  \: x }{   { cos }^{2} \: x}  }  +  \frac{ {sin}^{3} x}{sin \: x \:  - cos \: x} \:  \\  \\  =  > \frac{{cos}^{3}  \: x}{  { cos }^{2} x -  { sin }^{2}x }  +  \frac{ {sin}^{3} x}{sin \: x \:  - cos \: x} \:  \\  \\  =  >  \frac{ { cos }^{3} x -  { sin }^{3} x}{ cos \: x  - sin \: x  }  \\  \\  =  >  \frac{(cos \: x - sin \: x)(   { cos }^{2}   \: x + cos \: x.sin x +  { sin }^{2}  \: x )}{( cos \: x - sin \: x)}   \\  \\ =  >  { cos}^{2}  +  { sin}^{2}  + sin \: x .cos \: x  \\  \\ =  > 1 + sin \: x .cos \: x

 Here, \:LHS = RHS.

 \huge {\bold {Hope\: It \: Helps }}

Similar questions