English, asked by bnagilla, 10 months ago

Cos2theta/(1+sin2theta)

Answers

Answered by Anonymous
29

\huge\bigstar\mathfrak\blue{\underline{\underline{SOLUTION:}}}

To prove:

 \frac{cos2 \theta}{1 + sin2 \theta}

Proof:

L.H.S

 \frac{cos2 \theta}{1 + sin \theta}  =  \frac{ \frac{ \frac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta } }{  1 + 2tan \theta} }{1 +  {tan}^{2}  \theta}

[Using: sin2x=

 \frac{2tanx}{1 +  {tan}^{2} x}

and cos2x=

  \frac{1 -  {tan}^{2}x }{1 +  {tan}^{2}x } ]

 =  >  \frac{ \frac{ \frac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta } }{1 +  {tan}^{2} \theta + 2tan \theta } }{ 1 +  {tan}^{2} \theta  }  =  \frac{1 -  {tan}^{2} \theta }{1 +  {tan}^{2} \theta + 2tan \theta }  \\  \\  =  >  \frac{(1 - tan \theta)(1 + tan \theta)}{(1 + tan \theta) {}^{2} }  =  \frac{(1 - tan \theta)}{(1 + tan \theta)}  \\  \\  =  >  \frac{tan \frac{\pi}{4} - tan \theta }{tan \frac{\pi}{4} + tan \theta }  = tan( \frac{\pi}{4}  -  \theta)

R.H.S.

Hence proved ☺️

Similar questions