cos2theta -3cos theta +2 upon sin2theta =1
Answers
Answered by
30
solve: cos2theta - 3 cos theta + 2 / sin2theta = 1
We have
cos2θ−3cosθ+2sin2θ=1
⇒cos2θ−3cosθ+2=sin2θ
⇒cos2θ−3cosθ+2=1−cos2θ
[As sin2θ=1−cos2θ]
⇒2cos2θ−3cosθ+1=0
⇒2cos2θ−2cosθ−cosθ+1=0
⇒2cosθ(cosθ−1)−1(cosθ−1)=0
⇒(2cosθ−1)(cosθ−1)=0
⇒2cosθ−1=0 or cosθ−1=0
⇒cosθ=12 or cosθ=1
⇒θ = 60° or θ = 0°(rejected)
So, θ = 60°
Thanks ♥♥
Answered by
9
cos2θ−3cosθ+2sin2θ=1
cos2θ−3cosθ+2sin2θ=1⇒cos2θ−3cosθ+2=sin2θ
cos2θ−3cosθ+2sin2θ=1⇒cos2θ−3cosθ+2=sin2θ⇒cos2θ−3cosθ+2=1−cos2θ
cos2θ−3cosθ+2sin2θ=1⇒cos2θ−3cosθ+2=sin2θ⇒cos2θ−3cosθ+2=1−cos2θ[As sin2θ=1−cos2θ]
Hope its help uh :D
Similar questions