Math, asked by meha37, 7 months ago

Cos30° + sin60° / 1 + cos60° + sin30° =

Answers

Answered by Anonymous
13

Given:

 \rm   \to \dfrac{ \cos 30°  +  \sin 30 °}{1 +  \cos 60° +  \sin 30°}

Find:

 \rm  Evaluate: \dfrac{ \cos 30°  +  \sin 30 °}{1 +  \cos 60° +  \sin 30°}

Solution:

we, know that

 \rm  \to\cos 30° = \sin 60 ° =  \frac{ \sqrt{3} }{2}

 \rm  and\cos 60° = \sin 30 ° =  \frac{1}{2}

 \rm  Substitute \:  these \:  values  \: in   \: \dfrac{ \cos 30°  +  \sin 30 °}{1 +  \cos 60° +  \sin 30°}

So,

 \rm   \implies \dfrac{ \cos 30°  +  \sin 30 °}{1 +  \cos 60° +  \sin 30°}

 \rm \implies \dfrac{ \dfrac{ \sqrt{3} }{2} +   \dfrac{ \sqrt{3} }{2}   }{1 +  \dfrac{1}{2} +  \dfrac{1}{2}  }

 \rm \implies \dfrac{ \dfrac{  \sqrt{3} +  \sqrt{3} }{2}   }{\dfrac{2 + 1 + 1}{2}  }

 \rm \implies \dfrac{ \dfrac{  \sqrt{3} +  \sqrt{3} }{2}   }{\dfrac{4}{2}  }

 \rm \implies \dfrac{2\sqrt{3}}{2} \times  \dfrac{2}{4}

 \rm \implies  \sqrt{3}  \times  \dfrac{1}{2}

 \rm \implies  \dfrac{ \sqrt{3} }{2}

 \rm  Hence, \dfrac{ \cos 30°  +  \sin 30 °}{1 +  \cos 60° +  \sin 30°} =  \dfrac{ \sqrt{3} }{2}

Answered by prince5132
29

GIVEN :-

  • (cos30° + sin60°)/(1 + cos60° + sin30°)

TO FIND :-

  • Value of (cos30° + sin60°)/(1 + cos60° + sin30°).

SOLUTION :-

: \implies \displaystyle \sf  \dfrac{ (\cos30 ^{ \circ}  +\sin60 ^{ \circ})  }{(1 +\cos60 ^{ \circ}  +\sin30 ^{ \circ})  }  \\  \\  \\

\begin{gathered}\bullet\:\sf Trigonometric\:Values :\\\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D{e}fined\end{tabular}}\end{gathered} \\  \\

\\  : \implies \displaystyle \sf  \frac{ \bigg( \dfrac{ \sqrt{3} }{2}  +  \dfrac{ \sqrt{3} }{2} \bigg) }{ \bigg(1 + \dfrac{1}{2}  +  \dfrac{1}{2}  \bigg) }  \\  \\  \\

: \implies \displaystyle \sf   \frac{  \bigg(\dfrac{  \sqrt{3}  +  \sqrt{3} }{2} \bigg) }{  \bigg(\dfrac{2 + 1 + 1}{2}  \bigg)}  \\  \\  \\

: \implies \displaystyle \sf  \frac{  \bigg(\dfrac{2 \sqrt{3} }{2}  \bigg)}{ \bigg( \dfrac{4}{2} \bigg) }  \\  \\  \\

: \implies \displaystyle \sf  \frac{2 \sqrt{3} }{2}  \times  \frac{2}{4}  \\  \\  \\

: \implies \displaystyle \sf  \frac{2 \sqrt{3} }{4}  \\  \\  \\

: \implies  \underline{ \boxed{ \displaystyle   \dfrac{\sqrt{3}}{2} \sf }} \\  \\

\therefore \underline{\displaystyle \sf Value \ of \  \frac{ (\cos30 ^{ \circ}  +\sin60 ^{ \circ})  }{(1 +\cos60 ^{ \circ}  +\sin30 ^{ \circ}) } = \dfrac{\sqrt{3}}{2} } \\  \\  \\

Similar questions