cos³340+cos³390+cos³450
please give correct answer
Answers
Answered by
0
⇒cos
3
40
o
−3sin50
o
⇒cos
3
40
o
−3sin(90−40)
⇒cos
3
40−3cos40
Let cos40=cosx
by complementing trigonometric function
We can write cos(n
2
π
±θ)=cosθ
Now if cosx=cos40
then cos3x=cos120
Now ⇒cos3x=cos(2x+x)=cos2xcosx−sin2xsinx
⇒cos120=(cos
2
x−sin
2
x)cosx−2sin
2
xcosx
⇒
2
−1
=cos
3
x−(1−cos
2
x)cosx−2sin
2
xcosx
⇒
2
−1
=cos
3
x−cosx+cos
3
x−2(1−cos
2
x)cosx
⇒
2
−1
=2cos
3
x−cosx−2cosx+2cos
3
x
⇒8cos
3
x−6cosx+1=0
Solving this we get
cosx=−0.94,0.174.0.766
as cosx cannot be negative between [0,
2
π
] and always decreasing i.e cos45<cos40 and cos45=0.707
∴cosx=cos40=0.766
∴cos
3
40−3cos40=−1.848
Was this answer helpful?
Similar questions