Math, asked by alpulalatha3, 4 months ago

cos36-cos72 I need clear step by step explanation ​

Answers

Answered by ayushman177
2

Answer:

1/2 is the answer and attachment is there

Attachments:
Answered by mathdude500
1

Answer:

Question :-

  • Evaluate cos36° - cos72°

Answer

Concept used :-

Transformation Formula :-

\bf \:cosC - cosD =  - 2sin(\dfrac{C + D}{2} )sin(\dfrac{C - D}{2} )

\bf \:sin18° \:  = \dfrac{ \sqrt{5} - 1 }{4}

\bf \:sin54° \:  = \dfrac{ \sqrt{5}  +  1 }{4}

Solution :-

Consider cos36° - cos72°

Using identity, we get

\bf\implies \: - 2sin(\dfrac{ 36° + 72°}{2} )sin(\dfrac{36° - 72°}{2} )

\bf\implies \: - 2sin54°sin18°

\bf\implies \:2sin18°sin54°

On substituting the values of sin18° and sin54°, we get

\bf\implies \:2(\dfrac{ \sqrt{5} - 1 }{4})(\dfrac{ \sqrt{5} + 1 }{4}  )

\bf\implies \:2 \times (\dfrac{5 - 1}{16} )

\bf\implies \:\dfrac{1}{2}

_____________________________________

Other important values :-

\bf \:sin18°  = cos72°= \dfrac{ \sqrt{5}  - 1}{4}

\bf \:sin36° = cos54° = \dfrac{ \sqrt{10 - 2 \sqrt{5} } }{4}

\bf \:sin54° = cos36° = \dfrac{ \sqrt{5}  + 1}{4}

\bf \:sin72° = cos18° = \dfrac{ \sqrt{10  + 2 \sqrt{5} } }{4}

Similar questions