Math, asked by sumantamukherjee1049, 10 months ago

cos3A + sin (2A - 7π/6) = -2
find the number of general solutions.


with explanation please (process)

class 11
trigonometry
maths

" don't beg for mark as brainliest, the correct answer and process will be marked as brainliest "​

Attachments:

Answers

Answered by amitkumar44481
2

SolutioN :

 \tt  \dagger \:  \:  \:  \:  \: cos \: 3x + sin  \:  \bigg(2x -  \dfrac{7 \pi}{6}  \bigg) =  - 2.

  • We know, The values of Sin θ and Cos θ range between [ - 1 , 1 ]
  • And, When the value of Sin θ is - 1 and Cos θ is - 1 then, RHS shoud be satisfied.

 \tt : \implies Cos \: 3x = - 1.

 \tt : \implies Cos \: 3x =   Cos \:180.

 \tt : \implies Cos \: 3x = \pi.

 \tt : \implies Cos \: x =  \dfrac{ \pi}{3}

\rule{90}2

 \tt : \implies Sin \:\bigg(2x-\dfrac{7\pi}{6}\bigg) = - 1.

  • Now, We need to Putting the value of x in it. And let's prove RHS.

 \tt : \implies Sin \:\bigg(2x-\dfrac{7\pi}{6}\bigg)

 \tt : \implies Sin \:\bigg(2  \times \dfrac{ \pi}{3} -\dfrac{7\pi}{6}\bigg)

 \tt : \implies Sin \:\bigg( \dfrac{ 2\pi}{3} -\dfrac{7\pi}{6}\bigg)

 \tt : \implies Sin \:\bigg(\dfrac{4 \pi - 7\pi}{6}\bigg)

 \tt : \implies Sin \:\bigg(\dfrac{ - 3\pi}{6}\bigg)

 \tt : \implies Sin \:\bigg(\dfrac{ -  \cancel3\pi}{ \cancel6}\bigg)

 \tt : \implies  - Sin \:\bigg(\dfrac{\pi}{2}\bigg)

 \tt : \implies  - Sin \:90

 \tt : \implies  - 1.

Hence, LHS = RHS.

Now, Let's Find there General Solution.

 \tt \dagger \: \: \: \: \: General \: Solution \: Of \: x.

 \tt  \longmapsto x = 2n  \pi+  \dfrac{ \pi}{ 3}

 \tt  \longmapsto x =  \dfrac{6n \pi +  \pi}{ 3}

 \tt  \longmapsto x = \dfrac{ 6 \pi(n + 1)}{ 3}

Therefore, the General Solution of given Equation is 6π ( n + 1 )/3.

Similar questions