cos³a+sin³a/cosa+sina + cos³a-sin³a/cosa-sina =k
Answers
Question
cos³a+sin³a/cosa+sina + cos³a-sin³a/cosa-sina =k
Answer
= sinA+cosA/sinA-cosA + sinA-cosA/sinA+cosA
= (sinA+cosA)²/(sinA-cosA)(sinA+cosA)
= (sinA-cosA)²/(sinA-cosA)(sinA+cosA)
= sin²A+cos²A+2sinA+ cosA+sin²A+cos²A/ =sin²A-cos²A
= 2/sin²A-cos²A
= 2/sin²A-cos²A = 2/sin²A-(1-sin²A)
=. 2/2sin²A-1
= 2/2(1-cos²A-1)
=2/1-2cos²A
Solution :-
Solving LHS,
→ {(cos³a+sin³a)/(cosa+sina)} + {(cos³a-sin³a)/(cosa-sina)}
using :-
- a³ + b³ = (a + b)(a² + b² - ab)
- a³ - b³ = (a - b)(a² + b² + ab)
→ [{(cosa + sina)(cos²a + sin²a - cos*sina)}/(cosa + sina)] + [{(cosa - sina)(cos²a + sin²a + cos*sina)}/(cosa - sina)]
→ (cos²a + sin²a - cos*sina) + (cos²a + sin²a + cos*sina)
→ cos²a + cos²a + sin²a + sin²a + cos*sina - cos*sina
→ 2cos²a + 2sin²a
→ 2(cos²a + sin²a)
using cos² A + sin² A = 1 ,
→ 2 * 1
→ 2 .
therefore,
→ 2 = k .
Hence, value of k is equal to 2 .
Learn more :-
prove that cosA-sinA+1/cos A+sinA-1=cosecA+cotA
https://brainly.in/question/15100532
help me with this trig.
https://brainly.in/question/18213053