Math, asked by mahatoarti075, 2 months ago

cos40° -- sin40° = V2sin5°​

Answers

Answered by mathdude500
1

\underline{\bold{Given \:Question - }}

Prove that

\red{\rm :\longmapsto\:cos40 \degree \:  -  \: sin40\degree =  \sqrt{2}sin5\degree}

\large\underline{\sf{Solution-}}

Consider, LHS

\rm :\longmapsto\:cos40\degree - sin40\degree

We know,

\boxed{ \rm{ cos(90\degree - x) = sinx}}

So, using this identity, we get

\rm \:  =  \:  \: cos(90\degree - 50\degree) - sin40\degree

\rm \:  =  \:  \: sin50\degree - sin40\degree

Now, we know that,

\boxed{ \rm{ sinx  - siny = 2cos\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

So, using this identity, we get

\rm \:  =  \:  \: 2cos\bigg(\dfrac{50\degree + 40\degree}{2}  \bigg)sin\bigg(\dfrac{50\degree - 40\degree}{2}  \bigg)

\rm \:  =  \:  \: 2cos\bigg(\dfrac{90\degree }{2}  \bigg)sin\bigg(\dfrac{10\degree }{2}  \bigg)

\rm \:  =  \:  \: 2 \: cos45\degree \: sin5\degree

\rm \:  =  \:  \: 2 \:  \times \dfrac{1}{ \sqrt{2} }  \times  \: sin5\degree

\rm \:  =  \:  \:  \sqrt{2}   \times  \sqrt{2} \:  \times \dfrac{1}{ \sqrt{2} }  \times  \: sin5\degree

\rm \:  =  \:  \:  \sqrt{2}sin5\degree

Hence, Proved

Additional Information :-

\boxed{ \rm{ sinx  + siny = 2sin\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \rm{ cosx  + cosy = 2cos\bigg(\dfrac{x + y}{2}  \bigg)cos\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \rm{ cosx -  cosy = -  2sin\bigg(\dfrac{x + y}{2}  \bigg)sin\bigg(\dfrac{x - y}{2}  \bigg)}}

\boxed{ \rm{ 2sinxcosy = sin(x + y) + sin(x - y)}}

\boxed{ \rm{ 2cosxcosy = cos(x + y) + cos(x - y)}}

\boxed{ \rm{ 2sinxsiny = cos(x - y) - cos(x + y)}}

Similar questions