cos45.cos15- sin45.sin15. evaluate this
Answers
Since,
cos(A+B)=cosA.cosB - sinA.sinB
so, cos45.cos15- sin45.sin15=cos(45+15)=cos60=1/2=0.50
Answer:
cos45.cos15- sin45.sin15 .
Step-by-step explanation:
Trigonometry formulas are sets of different formulas involving trigonometric identities, used to solve problems based on the sides and angles of a right-angled triangle. These trigonometry formulas include trigonometric functions like sine, cosine, tangent, cosecant, secant, cotangent for given angles.
The sum and difference identities include the trigonometry formulas of sin(x + y), cos(x - y), cot(x + y), etc.
sin(x + y) = sin(x)cos(y) + cos(x)sin(y)
cos(x + y) = cos(x)cos(y) - sin(x)sin(y)
tan(x + y) = (tan x + tan y)/(1 - tan x • tan y)
sin(x – y) = sin(x)cos(y) - cos(x)sin(y)
cos(x – y) = cos(x)cos(y) + sin(x)sin(y)
tan(x − y) = (tan x - tan y)/(1 + tan x • tan y)
Given: cos45.cos15- sin45.sin15.
Find: Evaluate the trigonometry equation.
Use formula cos(x + y) = cos(x)cos(y) - sin(x)sin(y)
therefore
#SPJ2